Zhihua Hua
Education
Ph.D. in Plant Physiology, Pennsylvania State University, 2008
Research
- Ubiquitylation
- Cross talk of gene expression regulatory pathways
- Superfamily evolution and computational biology
Ubiquitylation is a eukaryotic post-translational modification process that adds a 76-amino acid peptide, called ubiquitin (Ub), on to a myriad of proteins to determine their functions. Most of the time, ubiquitylated proteins are recognized and degraded by the 26S proteasome, a 2.5 MDa proteolytic complex, in all eukaryotes. Given the wide range and important regulatory roles of ubiquitylation, the finding of Ub won the Nobel Prize for chemistry in 2004.
Compared to other eukaryotic organisms, ubiquitylation is particularly important for plants in protein functional regulation, which is in part impliedfrom the dramatic expansionof theubiquitin-26S proteasome system (UPS) in plants. For example, in Arabidopsis thaliana, one of the most important model organisms for biological sciences, ~12% of its proteome (encoded by >3,000 genes) has been predicted to be either directly involved in the ubiquitylation process or regulated by ubiquitylation.
Our lab is interested in the roles of ubiquitylaiton in plant developmental and physiological processes. Taking advantage of high throughput sequencing technologies, we are tackling these roles in A. thaliana and rice, through the integration ofevolutionary and computational biology, plant omics, genetics, biochemistry, and molecular biology. Our ultimate goal is to develop systems approaches for improving crop production through predictable manipulation of the UPS.
Publications
Publications from the Work at 91̽»¨
(*: Corresponding author; (g): graduate student; (u): undergraduate student; (v): visiting scholar; bold: Hua Lab members)
Yu, P.(g), Gao, Z.(v), and Hua, Z.* (2024). . Plants 13, 1485.
Tang, Q., Xu, D., Lenzen, B., Brachmann, A., Yapa, M.M. (g), Doroodian, D. (g), Schmitz-Linneweber, C., Masuda, T., Hua, Z., Leister, D., Kleine, T. (2024). . Plant Comm (pending revision)
Hua, Z.* (2023). . J Exp Bot 74, 6487-6504
Hua, Z.* (2023). Int J Mol Sci 24, 8185
Yapa, M.M.(g), Doroodian, P.(g), Gao, Z.(v), Yu, P.(g) and Hua, Z.* (2023). Front Plant Sci 14, 1146922
Yu, P.(g) and Hua, Z.* (2023). Int J Mol Sci 24, 2221
Yu, P.(g) and Hua, Z.* (2022). Plant J 111, 1324–1339
Li, Y.(g), Yapa, M.M.(g), and Hua, Z.* (2021). . Front Plant Sci, 12, 639253.
Doroodian, P.(g) and Hua, Z.* (2021). . Plants 10, 246
Hua, Z.* (2021). . Int J Mol Sci 22, 871.
Chen, J., Jiang, J., Liu, J., Qian, S., Song, J., Kabara, R., Delo, I., Serino, G., Liu, F., Hua, Z., Zhong, X. (2020). New Phytol, (Early View: https://doi.org/10.1111/nph.17103)
Yapa, M.M.(g), Yu, P.(g), Liao, F.(v), Moore, A.G.(u), and Hua, Z.* (2020). . Plant J 104, 493–509
Hua, Z.*, and Yu, P.(g) (2019). . Int J Mol Sci, 20, 3226.
Hua, Z.*, and Early, M.J.(u) (2019). . PLoS ONE, 14, e0209468.
Hua, Z.* (2019). . Protocols.io. 2019.
Marshall, R.S., Hua, Z., Mali, S., McLoughlin, F., and Vierstra, R.D. (2019). . Cell 177, 766-781.
Hua, Z.*, and Gao, Z.(v) (2019). . PeerJ 7, e6740.
Ruan, B.^, Hua, Z.^, Zhao, J.^, Zhang, B., Ren, D., Liu, C., Yang, S., Zhang, A., Jiang, H., Yu, H., Hu, J., Zhu, L., Chen, G., Shen, L., Dong, G., Zhang, G., Zeng, D., Guo, L., Qian, Q., and Gao, Z. (2019). . Plant Biotechnology Journal 17, 1344-1356 (^ Co-first author).
Hua, Z.* (2019). (Book). figshare
Zhang, G., and Hua, Z.* (2018). . PeerJ 6, e4678.
Hua, Z.*, and Early, M.J.(u) (2018). . biooRxiv 490490.
Hua, Z.*, Doroodian, P.(u), and Vu, W.(u) (2018). . Plant Journal 95, 296-311.
Haak, D.C., Fukao, T., Grene, R., Hua, Z., Ivanov, R., Perrella, G., and Li, S. (2017). . Frontiers in Plant Science 8, 1564.
Hua, Z., and Vierstra, R.D. (2016). . Trends in Cell Biology 26, 3-5.
Publications from the Work Prior to 91̽»¨
Hua, Z., Pool, J.E., Schmitz, R.J., Schultz, M.D., Shiu, S.H., Ecker, J.R., and Vierstra, R.D. (2013). . Proc Natl Acad Sci USA 110, 16927-16932.
Christians, M.J., Gingerich, D.J., Hua, Z., Lauer, T.D., and Vierstra, R.D. (2012). . Plant Physiol 160, 118-134.
Hua, Z., Zou, C., Shiu, S.H., and Vierstra, R.D. (2011). . PLoS ONE 6, e16219.
Hua, Z., and Vierstra, R.D. (2011). . Annu Rev Plant Biol 62, 299-334.
Miller, M.J., Barrett-Wilt, G.A., Hua, Z., and Vierstra, R.D. (2010). . Proc Natl Acad Sci USA 107, 16512-16517.
International Brachypodium Initiative (including Hua, Z. and Vierstra, R.D.) (2010). . Nature 463, 763-768.
Meng, X., Hua, Z., Sun, P., and Kao, T.H. (2011). . AoB Plants 2011, plr016.
Kubo, K., Entani, T., Takara, A., Wang, N., Fields, A.M., Hua, Z., Toyoda, M., Kawashima, S., Ando, T., Isogai, A., Kao, T.H., and Takayama, S. (2010). . Science 330, 796-799.
Fields, A.M., Wang, N., Hua, Z., Meng, X., and Kao, T.H. (2010). . Plant Mol Biol 74, 279-292.
Meng, X., Hua, Z., Wang, N., Fields, A.M., Dowd, P.E., and Kao, T.H. (2009). . Sex Plant Reprod 22, 263-275.
Hua, Z., Fields, A., and Kao, T.H. (2008). . Mol Plant 1, 575-585.
Hua, Z., and Kao, T.H. (2008). . Plant J 54, 1094-1104.
Hua, Z., Meng, X., and Kao, T.H. (2007). . Plant Cell 19, 3593-3609.
Hua, Z., and Kao, T.H. (2006). . Plant Cell 18, 2531-2553.
Hua, Z., Zhu, X., Lin, H., Gao, Z., Qian, Q., Yan, M., and Huang, D. (2001). [Studies of the integration and expression of exogenes in transgenic rice obtained via particle bombardment transformation]. J Genetics Genomics (formerly Acta Genetica Sinica) 28, 1012-1018.
Hua, Z., and Huang, D.N. (1999). Genetic mode of exogenes in transgenic plants. J Integr Plant Biol (formerly Acta Bot Sin) 41, 1-5.
Huang, D., Li, J., Zhang, S., Xue, R., Yang, W., Hua, Z., Xie, X., and Wang, X. (1998). . Chin Sci Bull 43, 784-787.
Computational Programs in Bioinformatics from the Work at 91̽»¨
Hua, Z.*, and Early, M.J.*(u) (2018). .
Hua, Z.* (2019) .